Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580948

RESUMO

BACKGROUND: To evaluate the physical properties of bioactive glass-modified universal multimode adhesive and its micro-tensile bond strength (µTBS) to artificially induced caries-affected dentin. METHODS: All bond universal adhesive was used in the study. Specimens were divided into 2 main groups: control unmodified adhesive and 5 wt% BAG modified adhesive. The degree of conversion, pH, bioactivity, and viscosity of the adhesives were tested with n = 5 for each test. Micro-tensile bond strength evaluation was done in etch & rinse (ER) and selective-etch (SE) modes, where 24 human molar teeth were used (n = 3), 12 teeth for immediate bond strength, and the other 12 were tested after 6 months of storage in simulated body fluid (SBF). RESULTS: No significant difference was found between the control and the 5wt% BAG groups regarding the degree of conversion (61.01 ± 0.43 and 60.44 ± 0.61 respectively) and the viscosity (109.77 ± 22.3 and 124.3 ± 9.92 respectively). The control group revealed significantly lower pH values than the 5wt% BAG group (3.16 ± 0.5 and 4.26 ± 0.09 respectively). Immediate bond strength results revealed that the 5wt% BAG in the ER mode had the highest bond strength followed by the control group in the ER mode (44.16 ± 7.53 and 44.00 ± 7.96 respectively). SE groups showed that the immediate strength of the 5wt% BAG group was higher than the control group (42.09 ± 6.02 and 39.29 ± 6.64 respectively). After 6 months of storage, bond strength results revealed a decrease in bond strength values for the control groups but not for the 5wt% BAG in both application modes. CONCLUSIONS: The incorporation of BAG (5wt%) improved the universal adhesive micro-tensile bond strength and bond durability for both adhesive application modes without affecting its degree of conversion or viscosity.


Assuntos
Colagem Dentária , Cárie Dentária , Humanos , Cimentos Dentários , Adesivos Dentinários/química , Cimentos de Resina/química , Suscetibilidade à Cárie Dentária , Teste de Materiais , Resistência à Tração , Dentina
2.
BMC Oral Health ; 24(1): 171, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308281

RESUMO

BACKGROUND: To assess the micro tensile bond strength (µTBS) of two resin matrix ceramic (RMC) blocks bonded to composite resin by using different repair protocols with and without chewing simulation (CS). MATERIALS AND METHODS: Two resin matrix ceramic blocks (Vita Enamic and Lava Ultimate) were divided into 4 groups according to the surface treatments: Bur grinding (control), Bur grinding + silane, 9.5% HF acid etching, and 9.5% HF acid etching + silane. The single bond universal adhesive was applied on all specimens after the surface treatments according to the manufacturer's instructions, it was administered actively on the treated surface for 20 s and then light cured for 10 s, followed by incremental packing of composite resin to the treated surface. Each group was further divided into 2 subgroups (with/without chewing simulation for 500,000 cycles). A micro tensile bond strength test was performed for each group (n = 15). The effect of surface treatments on the materials was examined by using a scanning electron microscope (SEM). The micro tensile bond strength (MPa) data were analyzed with a three-way ANOVA, the independent t-test, and one-way ANOVA followed by the Tukey post-hoc test. RESULTS: µTBS results were significantly higher for Lava Ultimate than Vita Enamic for all the surface treatment protocols with (p < 0.01). The chewing simulation significantly negatively affected the micro-tensile bond strength (p < 0.001). Bur grinding + saline exhibited the highest bond strength values for Lava Ultimate, both with and without chewing simulation. For Vita Enamic, bur grinding + saline and HF acid + saline showed significantly higher bond strength values compared to other surface treatments, both with and without chewing simulation (p ≤ 0.05). CONCLUSION: Bur grinding + silane could be recommended as a durable repair protocol for indirect resin matrix ceramics blocks with composite resin material.


Assuntos
Resinas Compostas , Colagem Dentária , Humanos , Resinas Compostas/química , Porcelana Dentária/química , Silanos/química , Mastigação , Condicionamento Ácido do Dente/métodos , Propriedades de Superfície , Cimentos de Resina/química , Cerâmica/química , Teste de Materiais , Resistência à Tração , Análise do Estresse Dentário
3.
J Mech Behav Biomed Mater ; 151: 106372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211500

RESUMO

OBJECTIVES: This study investigated the impact of using γ-methacryloxypropyl trimethoxy silane (MPS) for surface silanization of poly (urea-formaldehyde) (PUF) microcapsules which enclose a healing liquid of "triethylene glycol dimethacrylate (TEGDMA) and N,N dihydroxyethyl-p-toluidine (DHEPT)" on some mechanical properties of an experimental dental composite as well as its self-healing efficiency. METHODS: Synthesis of PUF microcapsules was done via in situ polymerization, followed by silanization with MPS silane. Silanized and non-silanized microcapsules were incorporated into a composite containing 30% polymer matrix and 70% fillers at different weight percentages (0%, 5%, 7.5% and 10%). The composite strength and elastic modulus were evaluated by Flexural testing. Fracture toughness KIc and self-healing efficiency were assessed by utilizing the "single edge notched beam" method. RESULTS: Flexural strength of all groups containing silanized microcapsules was non-significantly different from control group without microcapsules. However, in contrast to control group, all groups containing non-silanized microcapsules displayed considerably decreased flexural strength. Adding silanized and non-silanized microcapsules didn't show a significant change in the KIc-virgin. The silanized microcapsules' groups achieved a self-healing efficiency of about 49-77% recovery in KIc-virgin compared to 38-69% for their non-silanized counterparts. SIGNIFICANCE: In order to increase the interfacial adhesion with the polymer matrix, improve the mechanical properties, and increase the efficiency of self-healing of dental resin composite, PUF microcapsules were silanized for the first time in the dental field using MPS silane. This innovative silanized microcapsule-containing self-healing composite may hold promise for repairing the damage caused by restorative cracks and extending their service life.


Assuntos
Resinas Compostas , Resistência à Flexão , Cápsulas , Silanos , Polímeros , Formaldeído , Teste de Materiais , Propriedades de Superfície
4.
BMC Oral Health ; 23(1): 966, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053124

RESUMO

BACKGROUND: The study aimed to evaluate the influence of various beverages; with and without brushing; on the surface mechanical properties of two resin composites. METHODS: A total of 160 disc-shaped specimens were prepared for each of the following dental composites; nanohybrid ormocer (Admira fusion, VOCO GmbH, Cuxhaven, Germany) and nanohybrid resin composite (Grandio, VOCO GmbH, Cuxhaven, Germany). The baseline surface hardness and roughness measurements were carried out after 24 h. The composite samples were randomly distributed into one of the two groups; brushing and non-brushing, which were further divided into one of the four subgroups (n = 10); artificial saliva as control, coffee, red wine, and soft drink. In the non-brushing group, the specimens were immersed in the different beverages for five minutes three times daily for 30 days. The same procedure was done for the brushing group, in addition to brushing the specimens for five seconds. The surface hardness and roughness measurements were repeated after 30 days. One-way ANOVA and independent t-tests were used for statistical analysis. RESULTS: The soft drink had the most deteriorating effect and artificial saliva had the least. The change in surface properties was higher in the brushing subgroups. Grandio exhibited a higher change in surface microhardness while Admira fusion exhibited a higher change in surface roughness. CONCLUSIONS: The surface properties of both dental resin composites were negatively affected by using beverages and brushing.


Assuntos
Bebidas , Resinas Compostas , Humanos , Saliva Artificial , Metacrilatos , Propriedades de Superfície , Teste de Materiais
5.
BMC Oral Health ; 23(1): 447, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403039

RESUMO

BACKGROUND: This study aimed to assess the impact of theobromine and casein phospho-peptides/amorphous calcium phosphate with fluoride (CPP-ACPF) on the resin-dentine bond strength, microhardness, and dentine morphology. METHODS: A total of 18 sound human molars for micro-tensile bond strength (µTBS), 20 sound human premolars for microhardness, and 30 premolars for Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) were used. Based on the pre-treatment used, teeth were split into six groups; sound dentine, demineralized dentine, and demineralized dentine treated with theobromine (Sigma Aldrich) and MI paste plus (GC International, USA) for two-time intervals; 5 min and 1 month. The bonded teeth were sectioned to produce 1 mm2 resin-dentine sticks which were evaluated for µTBS using a universal testing device (Instron 3365, USA). The dentine microhardness was tested by using the Vickers microhardness tester (Nexus 4000 TM, Netherlands). The pre-treated dentine surface was examined using SEM/EDX (Neoscope JCM-6000 plus Joel benchtop SEM, Japan). µTBS results were analysed with two-way ANOVA. Microhardness and EDX results were analysed with two-way mixed model ANOVA. The significance level was set at (p ≤ 0.05). RESULTS: While both remineralizing materials at the two-time intervals demonstrated µTBS comparable to sound dentine (46.38 ± 12.18), the demineralized group demonstrated statistically the lowest µTBS (p < 0.001). Whether used for 5 min or 1 month, theobromine significantly increased the microhardness (50.18 ± 3.43) and (54.12 ± 2.66) respectively (p < 0.001), whereas MI paste only increased the hardness (51.12 ± 1.45) after 1 month (p < 0.001). CONCLUSIONS: The pre-treatment of demineralized dentine with theobromine for 5 min or 1 month could enhance its bond strength and microhardness while for MI paste plus, only 1-month application was efficient to ensure remineralization.


Assuntos
Caseínas , Fluoretos , Humanos , Caseínas/farmacologia , Teobromina , Peptídeos , Dentina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...